Stability Analysis of Lotka-Volterra Model in The Case of Interaction of Local Religion and Official Religion
DOI:
https://doi.org/10.51601/ijersc.v2i3.97Keywords:
lotka volterra, stability, interaction, local religion, official religionAbstract
The purpose of this research is to examine the interaction of local religions and official religions using the Lotka Volterra equation model. This study uses a literature study, which means that all the material in this study is taken, collected and compiled from various existing book sources. The steps in this study are to find the equilibrium point of each equation, then examine the behavior of each equilibrium point obtained. In this study, an analytical study of the prey population model has three equilibrium points, namely and . The stability of the interaction between local religions and official religions is achieved at an equilibrium . From this it shows that the interaction of official religion and local religion does not necessarily lead to the extinction of a religion. The interaction of local religious and official religion there is a point of equilibrium, where the social reality they can work in harmony.
Downloads
References
M. Rosyid, “Konversi agama masyarakat Samin,” UIN Walisongo Semarang, 2013.
H. J, “Dinamika Hubungan Islam dan Agama Lokal di Indonesia: Pengalaman Towani Tolotang di Sulawesi Selatan,” Wawasan J. Ilm. Agama dan Sos. Budaya, vol. 1, no. 2, pp. 179–186, 2016, doi: 10.15575/jw.v1i2.744.
N. Hadi, “Penetrasi Agama Negara pada Komunitas Tengger di Kantong Taman nasional Bromo-Tengger-Semeru,” J. Sej. dan Budaya, vol. 2, no. 2, 2015.
N. Sholihah, “ANALISIS KESTABILAN MODEL PREDATOR-PREY,” Universitas Islam Negeri Maulana Malik Ibrahim, Malang, 2017.
T. Hidayati, “KESTABILAN MODEL POPULASI MANGSA PEMANGSA DENGAN LAJU PEMANENAN TETAP,” Delta J. Ilm. Pendidik. Mat., vol. 6, no. 1, p. 38, 2018, doi: 10.31941/delta.v6i1.500.
N. K. Vitanov, Z. I. Dimitrova, and M. Ausloos, “Verhulst-Lotka-Volterra (VLV) model of ideological struggle,” Phys. A Stat. Mech. its Appl., vol. 389, no. 21, pp. 4970–4980, Nov. 2010, doi: 10.1016/j.physa.2010.06.032.
J. Reece, Urry, Cain, Wasserman, Minorsky, Campbell biology. Boston: Pearson, 2005.
N. Bellomo and L. Preziosi, Modelling mathematical methods and scientific computation. 1994.
A. Dresch, D. P. Lacerda, and J. A. V. Antunes, “Design Science Research,” in Design Science Research, Springer International Publishing, 2015, pp. 67–102.
K. M. Colin Robson, Real World Research, 4th Edition. 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 International Journal of Educational Research & Social Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.