K-Means Clustering Method On Academic Advising Management And Early Detection Of Student Dropout (Sequential Explanatory Mixed Method Study At UIN Sunan Ampel Surabaya And IAIN Kediri)

Authors

  • Ummiy Fauziyah Laili Islamic Education Management, Sayyid Ali Rahmatullah State Islamic University, Jawa Timur, Indonesia
  • Ahmad Tanzeh Islamic Education Management, Sayyid Ali Rahmatullah State Islamic University, Jawa Timur, Indonesia
  • Nur Efendi Islamic Education Management, Sayyid Ali Rahmatullah State Islamic University, Jawa Timur, Indonesia
  • Moch Gufron Islamic Education Management, Sayyid Ali Rahmatullah State Islamic University, Jawa Timur, Indonesia

DOI:

https://doi.org/10.51601/ijersc.v5i2.744

Abstract

In this millennial era, education is a need that must be prioritized. It can be seen from the progress in the field of education in Indonesia. Its development is increasingly showing rapid significance. But the irony is that the rapid development of education is also not free from various kinds of severe and diverse challenges and fierce competition at the regional and national levels. One crucial problem that illustrates the success and failure that often occurs in higher education is dropout. The student dropout rate is often associated with public interest in higher education, public interest often concludes that if the dropout rate is high then the quality of the campus can be said to be low, conversely if the student dropout rate is low then the quality of the campus is high. Research was conducted to find the application of the k-means clustering method in early detection of potential student dropouts using the k-means data meaning algorithm. The approach in this research is mixed methods research explanatory design model, where researchers conduct quantitative research with manova analysis and followed by qualitative research, the data used in quantitative methods are used to map students with the highest dropout potential to the lowest dropout potential using k-means clustering data analysis, while qualitative research uses a data base.The results of research on data analysis of mapping students who are potential dropouts resulting from k-means clustering data analysis for IAIN Kediri obtained 10 clusters with a silhouette coefficient value of 0.790 and 3 clusters with a silhouette coefficient value of 0.770. While at UIN Sunan Ampel Surabaya, 8 clusters were obtained with a silhouette coefficient value of 0.840 and 5 clusters with a silhouette coefficient value of 0.820. Based on the silhouette coefficient value data both at IAIN Kediri and UIN Sunan Ampel which is between 0.7 < SC ≤ 1, it is concluded that the cluster model obtained has a strong structure. The effect of k-means clustering method on academic advising management is explained from the results of MANOVA analysis for student data of UIN Sunan Ampel Surabaya shows there is a significant difference between k-means clustering method on academic advising management at UIN Sunan Ampel Surabaya with the value of F(469.179) = 8, p = 0.000., and there is a significant effect between k-means clustering method on academic advising management at IAIN Kediri with the value of F(244.8227) = 10, p = 0.000.While the effect of the k-means clustering method on early detection of student dropout is explained from the results of Manova analysis for data from UIN Sunan Ampel Surabaya which shows a significant influence between the k-means clustering method on early detection of student dropout at UIN Sunan Ampel Surabaya with a value of F (1,272,286) = 8, p 0. 000 there is a significant influence between the k-means clustering method on early detection of student dropout at IAIN Kediri. the results of qualitative data analysis are presented in 4 major sections, namely regarding the management of academic advising in planning, organizing, implementing and supervising academic advising in dropout prevention efforts at UIN Sunan Ampel Surabaya and IAIN Kediri.

Downloads

Download data is not yet available.

References

Ara Hidayat dan Imam Machali, 2010, Pengelolaan Pendidikan, Bandung: Educa.

Ara Hidayat, 2009, Pengelolaan Pendidikan: Konsep, Prinsip, dan Aplikasi dalam Mengelola Sekolah dan Madrasa, Bandung: Universitas Pendidikan Indonesia.

Ahmad, N.S, 2011, Pendidikan dan Masyarakat, Yogyakarta: Sabda Media.

Bettinger, E. P., & Baker, R. B. “The effects of student coaching: An evaluation of a randomized experiment in student advising”. Educational Evaluation and Policy Analysis, 36 (1), 2014.

Binti Maunah, 2009, Ilmu Pendidikan, Yogyakarta: TERAS.

Buku panduan akademik IAIN Kediri 2020.

Choiru Ummatin, 2022, Analisis Potensial Dropout Mahasiswa Dalam Upaya Peningkatan Kualitas IAIN Kediri, Paedagoria: Jurnal Kajian, Penelitian Dan Pengembangan Kependidikan.

Firmansyah, A., Gufroni, A. I., & Rachman, A. N, 2017, Data Mining Dengan Metode Clustering K-Mean Untuk Pengelompokan Mahasiswa Potensial Dropout Pada Program Studi Teknik Informatika Universitas Siliwangi, Tasikmalaya: Jurnal Teknik Informatika.

Heryadi Teguh,“Penerapan Algoritma K-means untuk Pengelompokan Data Nilai Siswa”, Jurnal A21, 2009.

Harahap, A. P. Hrp, N.K.A.R. Dewi, Macrozoobenthos diversity as anbioindicator of the water quality in the River Kualuh Labuhanbatu Utara, International Journal of Scientific & Technology Research, 9(4), 2020, pp. 179-183.

Lumbantoruan Rosni, 2014, Pengukuran Kemampuan Prediktif Teknik Clusteringdengan Figure of Merit, Bandung: Institute Teknologi Bandung.

Kementrian Pendidikan dan Kebudyaan, 2016, Panduan Operasional Penyelenggaran Bimbingan dan Konseling Sekolah Menengah Atas (SMA). Direktorat Jenderal Guru dan Tenaga Kependidikan.

Ren, Y., Chawla, N. V., Sun, Y., & Yu, P. S. 2015, Early prediction of student dropout and performance in MOOCs using higher granularity temporal information. In Proceedings of the 2015 SIAM International Conference on Data Mining (SDM).

Hasrian Rudi Setiawan, 2021, Manajemen Peserta Didik Upaya Peningkatan Kualitas Lulusan, Medan: Umsu Press.

Harahap, Arman ,2018, Macrozoobenthos diversity as bioindicator of water quality in the Bilah river, Rantauprapat, Medan. J. Phys.: Conf. Ser. 1116 052026.

Hafiduddin dan Nur Hasyim, Peran pembimbing Akademik dalam Mengoptimalkan Hasil Studi Mahasiswa Studi pada Politeknik Negeri Jakarta, Jurnal Akuntansi Politeknik Negeri Jakarta, Jakarta: Jurusan Akuntansi Politeknik Negeri Jakarta, Vol. 2, No. 1. 2013.

Ieannoal Vhallah, dkk, Pengelompokan Mahasiwa Potensial Dropout Menggunakan Metode Clustering K-Means, Jurnal RESTI, Vol. 2 (2), 2018.

Irchamiyati, et al, 2020, Manyongsong realitas Baru, Menuju Kesejahteraan Universa yang Berkemajuan, Yogyakarta: Masa Kini.

Harahap, A. et, all, Macrozoobenthos diversity as anbioindicator of the water quality in the Sungai Kualuh Labuhanbatu Utara, AACL Bioflux, 2022, Vol 15, Issue 6.

Ieannoal Vhallah, et al, “Pengelompokan Mahasiswa Potensial Drop Out menggunakan Metode Clustering K-Means”, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 2, No. 2, 2018.

Larose, D, 2005, Discovering Knowledge In Data : An Introduction To Data Mining: John Willey And Sons. Inc.

Lumbantoruan Rosni, 2014, Pengukuran Kemampuan Prediktif Teknik Clustering dengan Figure of Merit, Bandung: Institute Teknologi Bandung.

Muhammad Idris Usman, Pesantren Sebagai Lembaga Pendidikan Islam (Sejarah Lahir, Sistem Pendidikan, dan Perkembangannya Masa Kini), Jurnal Al Hikmah, Vol. XIV No.1. 2013.

Menteri Pendidikan dan Kebudayaan Republik Indonesia, 2014, Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia, Jakarta: Kemendikbud.

Purba, W., Tamba, S., & Saragih, J, 2018, The Effect Of Mining Data K-means clustering Toward Students Profile Model Dropout Potential. Iop Conf. Series: Journal Of Physics: Conf. Series 1007.

Purba, W., Tamba, S., & Saragih, J. The Effect Of Mining Data K-means clustering Toward Students Profile Model Dropout Potential. Iop Conf. Series: Journal Of Physics: Conf. Series 1007, 2018.

Prim Masrokan Mutohar, 2013, Manajemen Mutu Sekolah: Strategi Peningkatan Mutu dan Daya Saing Lembaga Pendidikan Islam, Jogjakarta: Ar-Ruzz Media.

Reza wahyu W,et al, 2019, Perbandingan Kualitas Hasil Klaster Algoritme K-means dan Isodata pada Data Komposisi Bahan Makanan , Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 3, No. 7, Malang: Universitas Brawijaya.

Soetjipto Dan Raflis Kosasi, 2009, Profesi Keguruan, Jakarta: Rineka Cipta.

Saxena, P. S., & Govil, P. M, 2018, Prediction of Student’s Academic Performance. Special Conference Issue: National Conference on Cloud Computing & Big Data, India: Jaipur.

Usman, 2013, Manajemen: Teori, Praktik dan Riset Pendidikan Ed.4.Cet.1, Jakarta: Bumi Aksara.

Valeria A. Ivaniushina dan Oksana O. Zapletina. Participation in Extracurricular Activities and Development of Personal and Interpersonal Skills in Adolescents. Jurnal: Siberian Federal University. Vol. 11, No. 8. 2015.

Windania Purba, et al, “The Effect of Mining Data K-means clustering Toward Students Profile Model Drop Out Potential”, Journal of Physics: Conference Series, 2018.

Yusran Razak, Abdul Aziz, Kepemimpinan, Kinerja Dosen Dalam Peningkatan Mutu Pendidikan Perguruan Tinggi, Tanzim Jurnal Penelitian Manajemen Pendidikan Vol.1 No.2. 2016.

Yusrin Ahmad Tosepu, 2018, Arah Perkembangan Pendidikan Tinggi Indonesia. Surabaya: Jakad.

Yansen Alberth Reba & Yulius Mataputun, 2021, Manajemen Bimbingan dan Kongseling, Purbalingga: Eureka Media Aksara.

Downloads

Published

2024-04-30

How to Cite

Fauziyah Laili, U. ., Tanzeh, A., Efendi, N., & Gufron, M. (2024). K-Means Clustering Method On Academic Advising Management And Early Detection Of Student Dropout (Sequential Explanatory Mixed Method Study At UIN Sunan Ampel Surabaya And IAIN Kediri). International Journal of Educational Research &Amp; Social Sciences, 5(2), 335–346. https://doi.org/10.51601/ijersc.v5i2.744

Issue

Section

Articles